mabyabt's blog

SLS 3D Printing for the Masses

To bring SLS 3D printing technology to the masses, Tomas Starek is designing an affordable and open-source printer called SLS4All

sls4all

SLS (Selective Laser Sintering) is a rather exotic 3D printing process that few hobbyists can access. There are no consumer SLS 3D printers on the market, which means only corporations and well-funded makerspaces tend to have these machines. But SLS printing offers some unique advantages over other 3D printing processes that would benefit many hobbyists. To bring this technology to the masses, Tomas Starek is designing an affordable and open-source SLS 3D printer called SLS4All.

SLS (Selective Laser Sintering) is a rather exotic 3D printing process that few hobbyists can access. There are no consumer SLS 3D printers on the market, which means only corporations and well-funded makerspaces tend to have these machines. But SLS printing offers some unique advantages over other 3D printing processes that would benefit many hobbyists. To bring this technology to the masses, Tomas Starek is designing an affordable and open source SLS 3D printer called SLS4All.

SLS 3D printing works by shining a laser onto a bed of powdered material—usually some form of polymer, though metal SLS printers exist. The laser melts and fuses the powdered material, forming a solid. As with other forms of 3D printing, the layers build up to create a three-dimensional object. SLS printing offers two primary advantages over other processes: it works with materials not suitable for FFF (Fused Filament Fabrication) or resin printing, and the powder bed supports parts, thus making bridges and overhanging geometry a non-issue.

SLS (Selective Laser Sintering) is a rather exotic 3D printing process that few hobbyists can access. There are no consumer SLS 3D printers on the market, which means only corporations and well-funded makerspaces tend to have these machines. But SLS printing offers some unique advantages over other 3D printing processes that would benefit many hobbyists. To bring this technology to the masses, Tomas Starek is designing an affordable and open-source SLS 3D printer called SLS4All.

sls method

SLS 3D printing works by shining a laser onto a bed of powdered material—usually some form of polymer, though metal SLS printers exist. The laser melts and fuses the powdered material, forming a solid. As with other forms of 3D printing, the layers build up to create a three-dimensional object. SLS printing offers two primary advantages over other processes: it works with materials unsuitable for FFF (Fused Filament Fabrication) or resin printing. The powder bed supports parts, thus making bridges and overhanging geometry a non-issue.

thing1

SLS (Selective Laser Sintering) is a rather exotic 3D printing process that few hobbyists can access. There are no consumer SLS 3D printers on the market, which means only corporations and well-funded makerspaces tend to have these machines. But SLS printing offers some unique advantages over other 3D printing processes that would benefit many hobbyists. To bring this technology to the masses, Tomas Starek is designing an affordable, open-source SLS 3D printer called SLS4All.

thing2

SLS 3D printing works by shining a laser onto a bed of powdered material—usually some form of polymer, though metal SLS printers exist. The laser melts and fuses the powdered material, forming a solid. As with other forms of 3D printing, the layers build up to create a three-dimensional object. SLS printing offers two primary advantages over other processes: it works with materials unsuitable for FFF (Fused Filament Fabrication) or resin printing, and the powder bed supports parts, thus making bridges and overhanging geometry a non-issue.

thing3

Moving a laser, either with galvo mirrors or a gantry setup, is trivial. Laser cutters already do this and a SLS printer just needs the added ability to keep the laser in focus on the Z axis. But an SLS 3D printer must also deposit a very fine layer of the powdered material onto the bed between every pass. It must do so without disturbing the printed part. The thickness of the new powder layer also has to be precise and consistent. The mechanism that handles that process, called the recoater, presents the biggest design challenge.

thing4

SLS (Selective Laser Sintering) is a rather exotic 3D printing process that few hobbyists can access. There are no consumer SLS 3D printers on the market, which means only corporations and well-funded makerspaces tend to have these machines. But SLS printing offers some unique advantages over other 3D printing processes that would benefit many hobbyists. To bring this technology to the masses, Tomas Starek is designing an affordable, open-source SLS 3D printer called SLS4All.

SLS 3D printing works by shining a laser onto a bed of powdered material—usually some form of polymer, though metal SLS printers exist. The laser melts and fuses the powdered material, forming a solid. As with other forms of 3D printing, the layers build up to create a three-dimensional object. SLS printing offers two primary advantages over other processes: it works with materials not suitable for FFF (Fused Filament Fabrication) or resin printing, and the powder bed supports parts, thus making bridges and overhanging geometry a non-issue.

t5

Moving a laser, either with galvo mirrors or a gantry setup, is trivial. Laser cutters already do this and an SLS printer just needs the added ability to keep the laser in focus on the Z axis. But an SLS 3D printer must also deposit a very fine layer of the powdered material onto the bed between every pass. It must do so without disturbing the printed part. The thickness of the new powder layer also has to be precise and consistent. The mechanism that handles that process, called the recoater, presents the biggest design challenge.

fullyoperational

Starek's design is well on its way to overcoming that challenge. His SLS4All 3D printer already has a fleshed-out recoater mechanism based on a roller that rides along on standard hardened steel rods. The rest of the printer is made of a combination of T-slot aluminum extrusion, aluminum tube and channels, custom aluminum sheet, and 3D-printed plastic. To facilitate speedy printing, it utilizes a 5W 445nm laser diode paired with mirror galvos.

SLS4All is still in a work in progress, but Starek seems to be very close to the point where he can start running tests prints. As designed, the printer will have an effective print volume of 150 x 150 x 180 mm, which is large enough to be very usable.

#3dprinting #engineering